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9. Nested Squares. A square oy : ap < x < by, co < y < dy is divided into four equal
squares by line segments paralle] to the coordinate axes. One of those four smaller squares
o1:a1 < x < by, c; <y <d is selected according to some rule. It, in turn, is divided
into four equal squares one of which, called o, is selected, etc. (see Sec. 49). Prove
that there is a point (xo, yo) which belongs to each of the closed regions of the infinite
sequence oy, 01, 0, . . . . . .

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed
intervalsa, <x <byandc, <y <d,(n=0,1,2,...).

/u.\\ CAUCHY INTEGRAL FORMULA

Another fundamental result will now be established.

Theorem. Let f be analytic everywhere inside and on a simple closed contour
C, taken in the positive sense. If zo is any point interior to 'C, then R
) =5 [ LB%

. . . Tl Jc Z— 20

Expression (1) is called the Cauchy integral formula. It tells us that if a function
f is to be analytic within and on a simple closed contour C, then the values of f
interior to C are completely determined by the values of f on C.

We begin the proof of the theorem by letting C,, denote a positively oriented circle
|z —zo| = p, where p is small enough that C, is interior to C (see Fig. 68). Since the
quotient f(z)/(z — zo) is analytic between and on the contours C, and C, it follows
from the principle of deformation of paths (Sec. 53) that

f(@)dz - f(2)dz

. c z— No‘, c, 2—20
This enables us to write
: (z) dz dz.. (2) — f(20)
@ L%t = [ 1@ 1),
c 2—20 ¢, 2—20 c, Z—20

But [see Exercise 13, Sec. 46]

0 "X FIGURE 68
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and so equation (2) becomes

f@)dz 2mif(zg) = f@) — f(z0)

C Z—20 c; Z—20

©)

dz.

Now the fact that f is analytic, and therefore continuous, at Zo ensures that
corresponding to each positive number &, however small, there is a positive number §
such that . v

@) 1f (@) — f(z0)l <& whenever |z—zo| < m..

Let the radius p of the circle C,, be smaller than the number § in the second of these
inequalities. Since |z — zg| = p < & when z is on Cp, it follows that the first of
inequalities (4) holds when z is such a point; and the theorem in Sec. 47, giving upper
bounds for the moduli of contour integrals, tells us that

f@) — f(z0)

c, .Z—2o

m ,
&NA m Nabnwam.

In view of equation (3), then,

f(2)dz
c 32— 2

—2mif(z0)| < 2me.
Since the left-hand side of this E,oncme is a nonnegative constant that is less than an
arbitrarily small positive number, it follows that

[ f(z)dz

c 2—2

—2mif (z0) =0.
Hence equation (1) is valid, and the theorem is proved.

When the Cauchy integral formula is written as

f(@)dz
c 2—2

(5) = 27if(20),

it can be used to evaluate certain integrals along simple closed contours.

EXAMPLE. Let C be the positively oriented circle |z| = 1 about the origin.
Since the function ) ,
: cosz
| flz)= Nm’._.|© .

is analytic inside and on C and since the origin zo = 0 is interior to C, equation G.v
tells us that

\ cos z [ (cosz)/(Z2+9) = 27i

c

W@+ T e T gm0 =IO =5
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55/ AN EXTENSION OF THE CAUCHY
INTEGRAL FORMULA

The Cauchy integral formula in the theorem in Sec: 50 can be extended so as to provide
an integral representation for derivatives £ (zo) of f at zo.

Theorem. Let f be analytic inside and on a simple closed contour C, taken in
the positive sense. If zg is any point interior to C, then

() 1£gru=ﬁ\ f@dz o _01,2,..),

2miJe (z — zo)rt!

With the agreement that
| fOz0) = f(zo) and = 0! =1,
this theorem includes the Cauchy integral formula

1 d
©) fla) = — [ £2%

2mwiJe Nlno

<mnmomco= of expression (1) will be taken up in mmo 56.
‘When written in the form

©) _\Eu,ﬁ W)  (1=0,1,2,..),

c (2 —zo)"*. . .nl
expression (1) can be useful in evaluating certain’integrals when f is analytic inside

and on a simple closed contour C, taken in the positive sense, and zo is any point
interior to C. It has already been illustrated in Sec. 50 when n = 0.
EXAMPLE 1. If C is the positively oriented unit circle |z| = 1 and

f(2) = exp(2z2),
then

\QGSN,VRNH\ f@)dz w:; SAS mﬁ.
c g

74 (z'— 8u+_ =

EXAMPLE 2. Let zg be any point Eﬁag to.a positively oriented simple closed
contour C. When f(z) = 1, expression (3) shows that

d
\|NHN§.
c Z—20

\FHO =12, ).
C

AN — Nov=+_

(Compare with Exercise 13, Sec. 46.)

and
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Expression (1) can also be useful in slightly different notation. Namely, if s
denotes points on C and if z is a point interior to C, then

: ; ! f(s)ds :
4 Wy = 2 [ J8)as =
@ Q=55 | o pm =012,
where f O(z) = f(z) and, of course, 0! = 1. Our next example illustrates the use of
expression (4) in the form

) \n @\MMWW_MH _ 2mi \3@ G5 = 0,033,
which includes Em.m@oﬁm._ case
©) v f(s)ds — 2mi £(2).

c §—2

EXAMPLE 3. If n is a nonnegative anomoa and f(z) = (z2 — 1)*, expression

(4), becomes
(s> — D"ds
=1 = —_—
&N: A v Nu: c Ah - Nv=+_

where C is any simple closed contour surrounding z. Hs view of equation (7), one can
write the Legendre polynomial*

(7

(n=0,1,2..),

: 1 n
(®) | @@T:Q &:@ -D" (=0,1,2,..)
as k
2 __1\n
©) Pale) = — G = Ds 012,

N:.Iu:. c Ah INV=+H
Because
=D =D"G6+D"  (s+1)"

@ — C:.Z . @ — C:i s—1"

expression (9) reveals that

1 [ (s+1)ds
2+l Joo s =1
and by writing f(s) = @ + 1)" and z = 1 in equation (6), we arrive at the values

| .
N=+$.:

The values P,(—1) = (—=1)"(n =0, 1, 2, ...) can be found (Exercise 8, Sec. 57)ina
similar way.

P,(1) = @,Ho.ﬁm, e

P,(1) = .Na A+1)'=1 (=0,1,2,...)

*See Exercise 10, Sec. 20, and the footnote with it.
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Finally; we note how: expression (4) is mcmmmmﬂma If s denotes points onCand z
is a point interior to C, the Cauchy integral formula is -

1 d
(10) P LRI AL A

2niJec s—2z2

. By differentiating formally under this integral sign, without rigorous justification, we
find that

ENTI\ >a (s~ 0as,

2mi
or
%@v ds

- fl)= m o ts =
Likewise,

nen _ (2)() f(s)ds

F@= 2xi Jo (s — z)2t!

and

@@ [ fls)ds
2wi Jo (s — 2)31
These three special cases suggest that expression (4), which is to be verified in Sec. 56,

may be valid. A reader who wishes to accept oxwaomzon (4) without <mﬂmomnou can
easily pass to Sec. 57.

r\.\\\ ANV —

56. .<MEHO>1.EOZ OF THE EXTENSION

We turn now to the verification of the extended Cauchy integral formula that was
introduced in Sec. 55. Specifically, we consider a function f that is analytic inside and
on a simple closed contour C, taken in the positive sense, and we let z be any point
interior to C. We begin with statement (10), Sec. 55, of the Cauchy integral formula:
: : : 1 (s)ds
) f@y = — [ {9%

2ni e §s—2
In order to verify that f'(z) exists and that the expression
_ fs)ds
2 —_—
@ A F'@ = Nﬁ c(s—2)?

in Sec. 55 is valid, we let 4 denote the smallest distance from z to points s on C and
assume that 0 < |Az| < d (see Fig. 69). It then follows from expression (1) that

fe+ay)~f@) _ 1 A 1 I_vaé

Az T2 s—z—Az s—2z) Az
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0 x FIGURE 69

Evidently, then,

fe+AD-f@ _ 1 [ f@)ds
Az T 2w cl6s—z—A)(s—2)°
But . |
i : i .
_ 1 + Az

C-z2-A)(-2) (-2 (-z-A)(E-2)?
and this means that :
3) f@+A2) — f(2) B IHI f(s)ds |H:\ Azf(s)ds
Az 2mi Je 5 —2)*  2miJoc(s—z—AZ)(s —2)?

Next, we let M denote the maximum value of |f@s)|onC m:a observe that since
|s —z| > dand |Az| < d,

_.QINIDN_H_QINVIDN_N__QIN_I_DN:W.RI_DN_VO.
Thus

\ Az f(s)ds: ¥ |Az|M I
c(—2—A( —2)?| = (d—|Az])a?

where L .mm the length of C. Upon letting Az tend to zero, we find from this inequality
that the right-hand side of equation (3) also tends to zero. Consequently,

\Q+>®I%€I 1 f(s)ds

Az—0 Az 27i Jo 5= 2)? =0;

and the desired expression for f/(z) is established.
The same technique can be used to <m&@ the expression

4) F(2) = al \ (s)ds

iJe(s—2)3
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FIGURE 78 #

Now the factor 1/(s — z) in the integrand here can be put in the form
1 1 1

‘o . s—z s 1—(z/s)’
and we know from the example in Sec. 56 that

@

A3) _ l|nMUN=+IN|

when z is any complex number other than unity. Replacing z by z/s in expression (3),
then, we can rewrite equation (2) as

Hz_H 1

4 = 47—
) s—z s+l 2 (s — z)sN

Multiplying through this equation by f (s) and then integrating each side with respect
to s around Cyp, we find that

flo)ds N [ f(s)ds £(s) ds
= = M 4z \9 o

c S—2 Tl s —z)sN
In view of expression (1) and the fact that (Sec. 55)
1 [ fl)ds _ f®()

=y o s = n=0,1,2,...),
this reduces, after we multiply mﬁocmr by 1/(2ri), to _
O L f Y= M 1 Dt ont@,
where ,
(©) oty = 2 fiS ) ds

27i Je, (s — 2)sN
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Representation (4) in:Sec. 62 now follows once it is shown that

@) lim py(z) =0.

N—oo

To accomplish this, we recall that |z| = r and that Cy has radius ro, where ro. > r.
Then, if 5 is a point on Cy, we can see that

_ Is —z| = |Is| = |zl| =ro — 7.
Consequently, if M denotes the maximum value of | f (s)| on Qo. ’

N M Mr N
_bz@_mxl.iwaaulo \v .
2 (rg vawo ro—r

Inasmuch as (r/rg) < 1, limit (7) clearly holds.

The case z9 # 0

In order to verify the theorem when the disk of radius Ry is centered at an arbitrary
point zo, we suppose that f is analytic when |z — zo| < Ry and note that the composite
function f(z + zo) must be analytic when |(z + z9) — zo| < Ro. This last inequality
is, of course, just |z| < Ry ; and, if we write g(z) = f(z + 20), the analyticity of g in
the disk |z| < Ro ensures the existence of a Maclaurin series representation:

(O¥)
s =3 80 A v (I2] < Ro).

n=0

That is,

O Fm) :
Fetm =31 < gy,

|
=0 n.

After replacing z by z — z¢ in this equation and its condition of validity, we have the
desired Taylor series expansion (1) in Sec. 62.

/ma. EXAMPLES.

In Sec. 72, we shall see that any Hwﬁoﬁ. series representing a function f(z) about a
given point zq is unique. More precisely, we will show that if .

[o0)
F@ =) anz—2)"
n=0
for all points z interior to some circle centered at 20, then the power series here
must be the Taylor series for f about zo, regardless of how those constants arise.
This observation often allows us to find the coefficients a, in Taylor series in more

_ efficient ways than by m@@o&:ﬁw directly to the moHBEm an = f™(z0)/n! in Taylor’s

theorem.
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HEm section is'devoted to finding the mo:ogsm six:Maclaurin series expansions,
where zo = 0, and to illustrate how they can be used to find related expansions:

o)) HmNnMuNauIi%f:. (2l < D),
| . © :Mo ;

@ | mNnMuWnH+m+MI_+:. (lzl < 00),

" m=+H Nu Nm
3) WENHMHWA cassliv_uTerm_m.m (2] < 00),
@ SmTMu ::@LW_HTMITMI”!:, (lz] < 00),

o Nw:.l Nu m
(5) mwsrmnwﬁml._.cl_HN+u_+w_+:. (Iz] < 00),
Gy oomEuWU Ly M+ 2 < < i 2 a5

5 e (2n)! 41

We list these results together in order to have them for H.mm& reference later on. Since
the expansions are familiar ones from calculus with z instead of x, the reader should,
however, find them easy to remember.

In addition to collecting expansions (1) through (6) together, we now present their

derivations as Examples 1 through 6, along with some other series that are immediate
consequences. The reader should always keep in mind that

(a) the regions of convergence can be determined before the actual series are found;
(b) there may be several reasonable ways to find the desired series.

EXAMPLE 1. Representation (1) was, of ooﬁmm,_ogﬁ.som earlier in Sec. 61,

where Taylor’s theorem was not used. In order to see how Taylor’s theorem can be -

used, we first note that the point z = 1 is the only singularity of the function
1
f) = Hll.
’ ~g
in the finite plane. So the desired Maclaurin series converges to f(z) when |z| < 1.
The derivatives of f(z) are
n!

(n) ——e T
_\. ANV G. — Nv=+_

Hence if we agree that £©@(z) = f(z) and 0! =1, we find that f®(0)=n! when
n=0,1,2,...;and upon writing

. (n) .
ANVIM\ .on 2y A

we arrive at the series meommEmmos A 1.

SEC. 64 5 g EXAMPLES 191

If we substitute —z for z in equation (1) and its condition of validity, and note
that |z| < 1 when | — z| < 1, we see that

MA D"z" (2] < D).

H._.NI o

If, on the other hand, we replace the <m§m€a z in equation (1) by 1 — z, we wm<m
the Taylor series representation

Hs A
ﬁMTc:T%A_T:Ac.
z n=0 :
This condition of validity follows from the one associated with expansion (1) since
|1 —z| < listhesameas |z — 1| < 1.

For another application of expansion (1), we now seek a Taylor series represen-
tation-of the function

1

f@) = -2
about the point zo = i. Since the distance between z and the singularity z = 1 is
|1 — i| = +/2, the condition of validity is |z — i| < /2. (See Fig. 79.) To find the

series, which involves powers of z — i, we first write

1L - 1 1 1
TNIQLTQLVIHL.TANLV.
1—i
Because
2~1]| - Jg=¥]". gl !
1—i| 1—il 3

when |z — i| < +/2, expansion (1) now tells us that

1 Dol g=y
IHHMAHI.V A_NIN._A)\MVM
1— n=0 1t :
1—1i
y
\\\\\ I////
/ \
/ \
/ \
/ \
] |
L _
\ 2
\ : /
\; /
// (0] \\M X i
N FIGURE 79 .
lz—i] <2
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and:we arrive at the Taylor series expansion

Sl 1 &Kz =I8_®|$= .
l—z 1-—i MUAHINV IMUCIN.vsi (2 —i] < V2).

n=0 n=0

EXAMPLE 2. Since the function f(z) = €* is entire, it has a Maclaurin series
representation that is valid for all z. Here f™(z) = e*(n =0, 1, 2, ...); and because
f®0) = 1(n = 0,1,2,...), expansion (2) follows. Note that if z = x + i0, the
expansion becomes
et = al (=00 < x < 00).

n!
n=0

The entire function z3¢* is also represented by a Maclaurin series. The simplest
way to show.this is to replace z by 2z in expression (2) and then multiply through the
result by z3:

Nwmwm s M |N=+u A_N_ < OOv

Finally, if we replace n by n — 3 here, we have

sl N: -3

n=3

EXAMPLE 3. One can use expansion (2) and the definition (Sec. 37)
m..N = ml.m
21

to find the Maclaurin series for the entire function f(z).= sinz. To give the details,
we refer to expansion (1) and write

sinz =

sinz = MUEV IMT&: = HM:L D5 (el < oo,
A S ! 2i —

But 1 — (—1)"-= 0 when #n is even, and so we can replace n by 2n + 1 in this last
series:

1 X N.w=+HNm=+H
1 —_ 1— (=T 2n+1 .
sinz = M ﬁ (=] Y (Iz] < c0)

Inasmuch as
1— (-1 =2 and- i = (%" = (-1)",

this reduces to expansion (3).

SEC: 02 INEGATIVE FOWERS OF (Z = Z0) i %)

EXAMPLE 4. Using term by termdifferentiation, which will be Emamoa in
moo 71, we differentiate each side of equation (3) and write

o~ (D" d g n2ntl 2 i
..uoﬁlMU@;.Tc_%N IWWA D :anﬁ D o

(Iz] < o).

mﬁum:&o: (4) is now verified.

EXAMPLE 5. Because sinhz = —i sin(iz), as @omﬁma out in Sec. 39, we need
only recall expansion (3) for sin z and write

QNvm=+_
sinhz = —i MUA y— on )] (Jz] < o),
which becomes
oo an+~ .
mmgmﬂma, (Iz] < 00).

n=0

EXAMPLE 6. Since coshz = cos(iz), according to Sec. 39, the Maclaurin
series (4) for cos z reveals that

e vam:
coshz = WWAIQN o) (|z] < 00),
and we arrive at the Maclaurin series representation
o0 NN:
coshz = M o) A_N_ < 00).
Observe that the Taylor series for cosh z about the point zg = —271, mon example,

is obtained by replacing the.variable z on each side of this last equation by z + 2mi
and then recalling Ammo 39) that cosh(z 4+ 27i) = cosh z for all z:

N 2n
coshz = Mo A‘N ._A.wmuvq_a (Iz] < o00).

65. NEGATIVE POWERS OF (z — zo)

If a function f fails to be analytic at a point zo, one cannot apply Taylor’s theorem
there. It is often possible, however, to find a series representation for f(z) involving
both positive and negative powers of (z — zp). Such series are extremely important
and are taken up in the next section. They are often obtained by using one or more of
the six Maclaurin series listed at the beginning of Sec. 64. In order that the reader be
accustomed to series involving negative powers of (z —zp), we pause here with mmﬁu.mH
examples vomoa exploring their general theory.
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68/ EXAMPLES

e coefficients in a Laurent series are generally found by means other than appealing
directly to the integral representations in Laurent’s theorem (Sec. 66). This has already
been illustrated in Sec. 65, where the series found were actually Laurent series. The
reader is encouraged to go back to Sec. 65, as well as to Exercises 10 and 11 of that
section, in order to see how in each case the punctured plane or disk in which the series
‘is valid can now be predicted by Laurent’s theorem. Also, we shall always assume that
the Maclaurin series expansions (1) through (6) in Sec. 64 are well known, since we
shall need them so often in finding Laurent series. As was the case with Taylor series,
we defer the proof of uniqueness of Laurent series till Sec. 72.

EXAMPLE 1. The function
, 1 1 1
Nc+$|

= z 1+2

has singularities at the points z = 0 and z = =i. Let us find the Laurent series
representation of f(z) that is valid in the punctured disk 0 < |z| < 1 (see Fig. 82).

FIGURE 82

" Since | — 72| < 1 when |z] < 1, we may substitute —z? for z in the Maclaurin
series expansion

H o0
©)) T==27 (<.
. : 8 n=0 )
The result is
1 = :

el -1 :.Nw: <1 ,

o Mﬁ ) Izl <1,
and so

f@)= WMIE? =Y =12 0<lzl < D).
n=0

n=0

e VO : LEXAMPLES PAAVR]
That is,
H o0
fF@==4+> (-D""1  O<lzl<1).
Z n=1
Replacing n by n + 1, we arrive at

o= W +3 DA (0 < o] < 1),

n=0
In‘standard form, then,
@) L f@ =) (= S (0< 2l < 1),
: n=0 z :
(See also Exercise 3.)
EXAMPLE 2. The function ,
1
fly =21,
z—1

which has the singular point z = 1, is analytic in the domains (Fig. 83)
Di:lzl<1 and D;:1 < |z] < o0.

In these domains f(z) has series representations in powers of z. Both series can be
found by making appropriate replacements for z in the same expansion (1) that was
used in-Example 1.

FIGURE 83

We consider first the domain D and note that the series asked for is a Maclaurin
series. In order to use series (1), we write

\@H.IAN.TCHM H,LN -
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Then

[e3) oo o . =)
\SHINMUN“IMN:HIMUN=+HIMUN=. (z| < 1).
n=0 n=0 n=0 n=0

Replacing n by n — 1 in the first of the two series on the far right here yields the desired
Maclaurin series:

3) \EulmNanMU%MLINMUN (Izl < 1).
n=1 n=0 n=1

The representation of f(z) in the unbounded domain D, is a Laurent series, and
the fact that |1/z] < 1 when zis a point in D, suggests that we use series (1) to write

1
1+ -

z 1 1 1
o= () - (- D £ - S
Z Z

1 < |z| < ).

Substituting #» — 1 for # in the last of these series reveals that

) © | &
f@Q=Y_—+>Y = (1<lzl <o),

n n
n=0 2 n=1 2

and we arrive at the Laurent series

=1
@ ENVMTFNMNI; (1 < |z] < 00).
n=1

EXAMPLE 3. Replacing z by 1/z in the Maclaurin series expansion

o0 N Nu
Ms_ H+H_+ +m_+...A_N_A8v,

n=0

we have the Laurent series representation

_\Nloo H IH H H H o
¢ IMEN:I TR 3 (0 < Jz] < o).

Note that no positive powers of z appear here, since the coefficients of the positive
powers are zero. Note, too, that the coefficient of 1/z is unity; and, according to
Laurent’s theorem in Sec. 66, that coefficient is the number
, 1

SuI.N:QN
2mi c
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where C is any positively oriented simple closed contour around the origin. Since

b1 =1, then,
\ e'? dz = 2ri.
c

This method of evaluating certain integrals around simple closed contours will be
developed in considerable detail in Chap. 6 and then used extensively in Chap. 7.

EXAMPLE 4. The function f(z) = 1/(z—i)?is already in the onE of a Laurent
series, where zo = i. That is,
H o

o= X =Dt O<fz=il<oo)

n=—0oo0
where c_5 = 1 and all of the other coefficients are zero. From expression (5), Sec. 66,
for the coefficients in a Laurent series, we know that

1 dz _
LI (D . Ve =0 41,47, ...
=i fe o @ )

where C is, for instance, any positively oriented circle |z — i| = R about the point
Zo = i. Thus [compare with Exercise 13, Sec. 46] v

dz 0 when n # —2,
c (z—i)3 ~ | 2wi whenn=-2.

EXERCISES
@Eam the Laurent series that represents the function

f@) =1z mEAMNv

in the aob._&so < |z] < o0.

=Dt 1
Ans. 1 R
ns. 1+ i Awﬁ + Hv_ N»:
@ Find a representation for the function
1 1 1
f@)= =--

1+z z 1+ (1/2)
in negative powers of z that is valid when 1 < |z| < 0.

00 1

A|Hv=+
Ans. ——,
3. Find the H.»Emi series %mﬂ represents the mczocon f(z) in Example 1, Sec. 68, érmu

1<zl < oo
A]Hv=+H
Ans. M_ leﬂa
n=
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(b) Show that the linear fractional transformation

z2—2
w =

z
can be written
1-27
1+2z°

Then, with the aid of the result in part (a), verify that it maps the disk’|z — 1| < 1
onto the left half plane Re w <0. B

Z=7-1, W= w=iW.

4. .H.,B:mmonamaos (1), Sec. 102, maps the point 7 = co onto the point w = exp(ic), which
lies on the boundary of the disk |w| < 1. Show that if 0 < o < 27 and the points z = 0

and z = 1 are to be mapped onto the points w = 1 and w = exp(ia/2), respectively, the
transformation can be written

w = ol T + @GAIE\NL
z+exp(ia/2) |-
5. Note that when o H,ﬁ\m,. the transformation in mxomowmm 4 becomes
iz +exp(in/4)
z+exp(in/4)
Verify that this special case maps points on the x axis as indicated in Fig. 123.

w =

FIGURE 123
iz + exp(im/4)

w= .
Z +exp(in/4)

6., Show that if Im zy < 0, transformation (1), Sec. 102, maps the lower half plane Imz < 0
onto the unit disk |w| < 1. B

7. The equation w = log(z — 1) can be written
Z=z-1, w HHo.mN.

Find a branch of log Z stich that the cut z plane consisting of all points except those on the

.momEg;WHo::onmm_uxmmwm mapped by w = log(z — 1) onto the strip0 < v < 27
in the w plane. ) o

103. MAPPINGS BY THE EXPONENTIAL FUNCTION

The object of E.mm section is to waoim.o the reader with some examples of mappings
by the exponential function e that was introduced in Chap. 3 (Sec. 30). Our examples

are .Hommo:mzw simple, and we begin here by examining the images of vertical and
horizontal lines.

\
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EXAMPLE 1. We know from Sec. 30 that the transformation
1) w = gt
can be written w = e*e’?, where 7 = x + iy. Thus, if w = pe?,

2) p=e, ¢=y.

The image of a typical point z = (cj, y) on a vertical line x = c1 rm.m polar
coordinates p = expcj and ¢ = y in the w plane. That image moves counterclockwise
around the circle shown in Fig. 124 as z moves up the line. The image of the line is
evidently the entire circle; and each point on the circle is the image of an infinite
number of points, spaced 27 units apart, along the line.

A horizontal line y = ¢, is mapped in a one to one manner onto the ray¢ =c;. To
see that this is so, we note that the image of a point z = (x, ¢,) has polar coordinates

p = e* and ¢ = c,. Consequently, as that point z moves along the entire line from left
to right, its image moves outward along the entire ray ¢ = c, as indicated in Fig. 124.

y. v
X=cC

== y=cy

FIGURE 124

w=expz.

Vertical and horizontal line segments are mapped onto portions of circles and rays,
respectively, and images of various regions are readily obtained from observations
made in Example 1. This is illustrated in the following example. :

EXAMPLE 2. Let us show that the transformation w = e? maps the rectangular
regiona < x < b,c <y < d onto the region ¢ < p < e?,¢c < ¢ < d. The
two regions and corresponding parts of their boundaries are indicated in Fig. 125.

y ; . v c’

0 a

o
®
Q

FIGURE 125

w=expz.
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The vertical line segment A D is mapped onto the arc p=e% c < ¢ < d, which
is labeled A’D’. The images of vertical line segments to the right of AD and joining
the horizontal parts of the boundary are larger arcs; eventually, the image of the line
segment BC is the arc p = b, ¢ < ¢ < d, labeled B'C’. The mapping is one to one
_mm. —¢ < 2m. Inparticular, ifc = 0 and 4 — 7,then 0 < ¢ < 7; and the rectangular
region is mapped onto half of a circular ring, as shown in Fig, 8, Appendix 2,

. Our final example here uses the images of horizontal lines to find the-image of a
horizontal strip.

EXAMPLE 3. When w = e*, the image of the infinite strip 0 < y < 7 is the
upper half v > 0 of the w plane (Fig. 126). This is seen’ by recalling from mmeEo 1
how a horizontal line Y =-cis transformed into a ray ¢ = c from the origin. As the
real number c¢ increases from ¢ — 0toc = m, the Y intercepts of the lines increase
ano.B 0 to 7 and the angles of inclination of the rays increase from ¢ = 0 to ¢ =m.
This mapping is also shown in Fig. 6 of Appendix 2, where corresponding points on
the boundaries of the two regions are indicated.

y v

FIGURE 126

w=expz.

\J 4. MAPPING VERTICAL LINE SEGMENTS BY w = sinz

mmso.o (Sec. 37) sinz = sinx cosh Y +icosxsinhy, where z = x + iy, the transfor-
mation w = sin z, where w = y + ; v, can be written

1) u = sinx cosh y, = cosx sinh y.

. O:.o method that is often useful in finding images of regions under this transfor-
H.smno: 1s-to examine images of vertical lines x — c1.If0 < ¢; < 7/2, points on the
line x = ¢; are transformed into points on the curve

2) ‘u=sincycoshy, v = cos ¢y sinh y (=00 < Yy < 00),
which is the right-hand branch of the hyperbola

_ 2 2
3) woo v i

sinfe;  cos? ¢,
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with foci at the points
w = =£4/sin? ¢; + cos?¢; = +1.

The second of equations (2) shows that as a point (c;, y) moves upward along the entire
length of the line, its image moves upward along the entire length of the hyperbola’s
branch. Such aline and its image are shown in Fig. 127, where corresponding points are
labeled. Note that, in particular, there is a one to one mapping of the top half (y > 0)
of the line onto the top half (v > 0) of the hyperbola’s branch. If —7/2 < ¢; < 0,
the line x = ¢; is mapped onto the left-hand branch of the same hyperbola. As before,
corresponding points are indicated in Fig. 127.

The line x = 0, or the y axis, needs to be considered separately.- According to
equations (1), the image of each point (0, y) is (0, sinh ). Hence the y axis is mapped
onto the v axis in a one to one manner, the positive y axis corresponding to the positive
v axis. ;

y v
F C F’ ﬁ:
E | B E'|B’
x| O T x -1 /o] i “
2 2 ! !
D | Al - Droy A FIGURE 127
w .= sinz.

We now illustrate how these observations can be used to establish the images of
certain regions.

EXAMPLE. Here we show that the transformation w = sinz is a one to one
‘mapping of the semi-infinite strip —7/2 < x < 7/2,y > 0 in the z plane onto the
upper half v > 0 of the w plane.

To do this, we first show that the boundary of the strip is mapped in a one to one
manner onto the real axis in the w plane, as indicated in Fig. 128. The image of the
line segment BA there is found by writing x = /2 in equations (1) and restricting
y to be nonnegative. Since # = coshy and v = 0 when x = /2, a typical point
(7r/2, y) on BA is mapped onto the point (cosh y, 0) in the w plane; and that image
must move to the right from B’ along the u axis as (/2, y) moves upward from B.
Points (x, 0) on the horizontal segment D B have images (sin x, 0), which move to the
right from D’ to B’ as x increases fromx = —7/2 to x = /2, 0ras (x,0) goes from

D to B. Finally, as points (—m/2, y) on the line segment D E move upward from D,
their images (—cosh y, 0) move left from D’.
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w = sin z.

Now each point in the interior —7/2 < x < /2,y > 0 of the strip lies on
one of the vertical half lines x = ¢, Y > 0 (—=m/2 < ¢; < 7/2) that are shown in
Fig. 128. Also, it is important to notice that the images of those half lines are distinct
and constitute the entire half plane v > 0. More precisely, if the upper half L of a
line x = ¢; (0 < ¢i < 7/2) is thought of as moving to the left toward the positive
Y axis, the right-hand branch of the hyperbola containing its image L’ is opening up
wider and its vertex (sincy, 0) is tending toward the origin w = 0. Hence L’ tends to

" become the positive v axis, which we saw just prior to this example is the image of the
positive y axis. On the other hand, as L approaches the segment BA of the boundary
of the strip, the branch of the hyperbola closes down around the segment B’ A’ of the u
axis and its vertex (sin ¢;, 0) tends toward the point w = 1. Similar statements can be
made regarding the half line M and its image M’ in Fig. 128. We may conclude that
the image of each point in the interior of the strip lies in the upper half plane v > 0
and, furthermore, that each point in the half plane is the image of exactly one point in
the interior of the strip. .

This completes our demonstration that the transformation w = sin z is a one to
one mapping of the strip —7/2 < x < /2,y > 0 onto the half plane v > 0. The
final result is shown in Fig. 9, Appendix 2. The right-hand half of the strip is evidently
mapped onto the first quadrant of the w plane, as shown in Fig. 10, Appendix 2.

/@QM MAPPING HORIZONTAL LINE
SEGMENTS BY w = sinz

Another convenient way to find the images of certain regions when w = sinz is to
consider the images of horizontal line segments y = ¢ (—mw < x < m), wherec; > 0.
According to equations (1) in Sec. 104, the image of such a line segment is the curve
with parametric representation :

@ u = sinx cosh ¢y, = CoSsx mw&nw ‘ (—mr <x=<m).
That curve is readily seen to be the ellipse
e R cm.

® sinh? ¢,

@) =1,

cosh? ¢,

whose foci lie at the points

w = +1/cosh? ¢; — sinh? ¢, = 1.
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The image of a point. (x, ¢;) moving to the right from point A to point E in Fig. 129
makes one circuit around the ellipse in the clockwise direction. Note that when smaller
values of the positive number c, are taken, the ellipse becomes smaller but retains the
same foci (%1, 0). In the limiting case ¢, = 0, equations (1) become

\

u=sinx, v=0 (-w<x<mn);

and we find that the interval —7 < x < & of the x axis is mapped onto the interval
—1 < u < 1 of the u axis. The mapping is not, however, one to one, as itis when ¢, > 0.

<

y=c,>0

NI

C e

. \/b\
Y& ’
E -

FIGURE 129

w =sinz.

EXAMPLE. The rectangular region —7/2 < x < 7/2, 0 < y < b is mapped
by w = sinz in a one to one manner onto the semi-elliptical region that is shown in
Fig. 130, where corresponding boundary points are also indicated. For if L is a line
segment y = ¢ (—7/2 < x < 7w /2), where 0 < ¢, < b, its image L' is the top
half of the ellipse (2). As ¢, decreases, L moves downward toward the x axis and the
semi-ellipse L’ also moves downward and tends to become the line segment E’F’ A’

from w = —1 to w = 1. In fact, when ¢, = 0, equations (1) become
ns, v=0 (ex<])
u=sinx, v : S SX=5
y
D bi|C B
L
E F A D/
T (0] gz X u
2 2
FIGURE 130 i : o
w = sinz. . :
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and this is clearly a one to one mapping of the segment EFA onto E'F’A’. Inasmuch
as any point in the semi-elliptical region in the w plane lies on one and only one of
the semi-ellipses, or on the limiting case E’F’A’, that point is the image of exactly
one point in the rectangular region in the z plane. The desired mapping, which is also
shown in Fig. 11 of Appendix 2, is now established.

@ . SOME RELATED MAPPINGS

Mappings by various other functions closely related to the sine function are easily
obtained once mappings by the sine function are known.

EXAMPLE 1. One need only recall the identity (Sec. 37)

mEAN + W.v HoOmN

to see that the transformation w = cos z can be written successively as

g
.NHN+M. w=sinZ.
Hence the cosine transformation is the same as the sine transformation preceded by a
translation to the right through /2 units. )

EXAMPLE 2. According to Sec. 39, the transformation w —. sinhz can be
written w = —i sin(iz), or

Z=iz, W=sinZ, w=—iW.
It is, therefore, a combination of the sine transformation and rotations through right
angles. The transformation w = cosh z is, likewise, essentially a cosine transformation
since cosh z = cos(iz).
EXAMPLE 3. ‘With the aid of the identities

. .
sin AN + Mv =cosz and cos(iz) = coshz

that were :mmn in the two examples just above, one can write the transformation
w = coshz as

T
€)) . N_IWN.N+M, w =sin Z.
Let us now use transformations (1) to find the image of the horizontal semi-infinite
strip
- x>20,0=<y=<m/2

under the transformation w = cosh z.

The first of transformations (1) is a rotation of the given strip through a right angle
in the positive direction followed by a translation 7 /2 units to the right, as shown in
Fig. 131. The transformation w = sin Z then maps the resulting strip onto the first
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x T X ¢cr pg” A7 u FIGURE 131
5 A

w = coshz.

quadrant of the w plane, as _u.o::oa out at the end of Sec. 104 and shown in Fig. 10,
Appendix 2. It is left to the reader to verify corresponding boundary points of the given
strip and the first quadrant that are labeled in Fig. 131.

EXERCISES

1. Show that the lines ay = x (a # 0) are mapped onto the spirals p = exp(a¢) under the
transformation w = exp z, where w = p exp(i¢). g

2. By considering the images of horizontal line segments, verify that the image of the -
rectangular region a < x <'b,c¢ < y < d under the transformation w = expz is the
region e? < p < e’, ¢ < ¢ < d, as shown in Fig. 125 (Sec. 103).

3. Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where
the transformation is w = exp z. )

4. Find the image of the semi-infinite strip x > 0,0 < y < 7 under the transformation
w = exp z, and label corresponding portions of the boundaries.

5. Show that the transformation w = sin z maps the top half (y > 0) of the vertical line
x =c¢ (—m/2 < c¢; < 0) in a one to one manner onto the top half (v > 0) of the
left-hand branch of hyperbola (3), Sec. 104, as indicated in Fig. 128 of that section.

6. Show that under the transformation w = sinz, aline x = ¢; (/2 < ¢ < 7) is mapped
onto the right-hand branch of hyperbola (3), Sec. 104. Note that the mapping is one to
one and that the upper and lower halves of the line are mapped onto the lower and upper
halves, respectively, of the branch.

7. Vertical half lines were used in the example in Sec. 104 to show that the transformation
w = sinz is a one to one mapping of the open region —7/2 < x < 7/2,y > 0 onto
the half plane v > 0. Verify that result by using, instead, the horizontal line segments
y=c (—m/2 < x < m/2), where ¢c; > 0. ’ -

8. (a) Show that under the transformation w = sinz, the images of the line segments

forming the boundary of the rectangular region 0 < x < 7/2,0 < y < 1 are the
line segments and the arc D’ E’ shown in Fig. 132. The arc D’E’ is a quarter of the

Y| v
EY- D E
F c F
_ mi2 . FIGURE 132
Al B X Al B c’'Du w = sinz.
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ellipse
u? v?
—t+ —— =1
cosh®?1  sinh?1
(b) Complete the mapping indicated in Fig. 132 by using images of horizontal line
segments to prove that the transformation w = sin z establishes a one to one corre-

spondence between the interior points of the regions ABDE and A’ B'D'E.

9. Verify that the interior of a rectangular region —7 < x < m,a <y <b lying above
the x axis is mapped by w = sin z onto the interior of an elliptical ring which has a cut
along the segment —sinhb < v < —sinhg of the negative imaginary axis, as indicated
in Fig. 133. Note that while the mapping of the interior of the rectangular region is one
to one, the mapping of its boundary is not.

FIGURE 133

w = sinz.

Hc.Ocmnzmﬁrm:r@qmnmmo_.amnonsHoOm:Nomncm oanommoammmooB@OmEozomEo
mappings :

1 1
Z=¢€ W=2Z+ =, =-W.
| | =+ Z w 5 w
Then, by referring to Figs. 7 and 16 in Appendix 2, show that when w = coshz, the
semi-infinite stripx < 0,0 < Yy <'m in the z plane is mapped onto the lower half v < 0
of the w plane. Indicate corresponding parts of the boundaries.

11. (a) Verify that the equation w = sin z can be written
NHN.AN+WV_ W=coshZ, w=-W.'

(b) Use the result in part (@) here and the one in Exercise 10.to show that the transfor-

- mation w = sin z maps the semi-infinite strip —m/2 < x < /2,y > 0 onto the

half plane v > 0, as shown in Fig. 9, Appendix 2. (This mapping was verified in a
different way in the example in Sec. 104 and in Exercise 7.)

107. MAPPINGS BY z2

FOHGNAmoo.Ev,éooosmaﬁmamoao mmE%EEEwEmﬁE:mmcuaonﬁoqgmmoﬂ.
mation w = z2, written in the form :

1) u=x*-y2 v=2xy.

We turn now to a less elementary example and-then (Sec. 108) examine related map-
pings w = z!/2, where specific branches of the square root function are taken.
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“EXAMPLE 1. Let us use equations (1) to show that the image of the vertical
strip0 < x < 1, y > 0,shownin Fig. 134, is the closed semiparabolic region indicated
there. :

I LI, N v
D| . A /
hm//
c B B . FIGURE 134
1 * . D’ (o4 1 u w=z2

- When 0 < x; < 1, the point (x;, y) moves up a vertical half line, labeled Ly
in Fig. 134, as y increases from y = 0. The image traced out in the uv plane has,
according to equations (1), the parametric representation

) :HHNMV\N, v=2x1y (0<y<o0).
) 1

Using the second of these equations to substitute for y in the first one, we see that the
image points (x, v) must lie on the parabola

3) v? = lewQ — NHNV,

with vertex at (x?, 0) and focus at the origin. Since v increases with y from v = 0,
according to the second of equations (2), we also see that as the point (x1, y) moves
up L; from the x axis, its image moves up the top half L/ of the parabola from the
u axis. Furthermore, when a number x, larger than x; but less than 1 is taken, the
corresponding half line L, has an image L that is a half parabola to the right of L/,
as indicated in Fig. 134. We note, in fact, that the image of the half line BA in that
figure is the top half of the parabola v? = —4(u — 1), labeled B'A’.

The image of the half line CD is found by observing from equations (1) that a
typical point (0, y), where y > 0, on CD is transformed into the point (—y?, 0) in the
uv plane. So, as a point moves up from the origin along CD, its image moves left from
the origin along the u axis. Evidently, then, as the vertical half lines in the xy plane
move to the left, the half parabolas that are their images in the uv plane shrink down
to become the half line C'D’.

It is now clear that the images of all the half lines between and including CD and
BA fill up the closed semiparabolic region bounded by A’B’C’D’. Also, each point in
that region is the image of only one point in the closed strip bounded by ABCD. Hence
we may conclude that the semiparabolic region is the image of the strip and that there
is a one to one correspondence between points in those closed regions. (Compare with

Fig. 3 in Appendix 2, where the strip has arbitrary width.)



